Kinetics and mechanism of the reactions of Au(III) complexes with some biologically relevant molecules.
نویسندگان
چکیده
The kinetics of the substitution reactions between the mono-functional Au(III) complexes, [Au(dien)Cl](2+) and [Au(terpy)Cl](2+) (dien = 3-azapentane-1,5-diamine, terpy = 2,2';6',2''-terpyridine) and bi-functional Au(III) complexes, [Au(bipy)Cl(2)](+) and [Au(dach)Cl(2)](+) (bipy = 2.2'-bipyridine, dach = (1R,2R)-1,2-diaminocyclohexane) and biologically relevant ligands such as l-histidine (l-His), inosine (Ino), inosine-5'-monophosphate (5'-IMP) and guanosine-5'-monophosphate (5'-GMP), were studied in detail. All kinetic studies were performed in 25 mM Hepes buffer (pH = 7.2) in the presence of NaCl to prevent the spontaneous hydrolysis of the chloride complexes. The reactions were followed under pseudo-first order conditions as a function of ligand concentration and temperature using stopped-flow UV-vis spectrophotometry. The results showed that the mono-functional complexes react faster than the bi-functional complexes in all studied reactions. The [Au(terpy)Cl](2+) complex is more reactive than the [Au(dien)Cl](2+) complex, which was confirmed by quantum chemical (DFT) calculations. A more than 50% lower activation energy for the terpy than for the dien based complex was found. The bi-functional [Au(bipy)Cl(2)](+) complex is more reactive than the [Au(dach)Cl(2)](+) complex. The reactivity of the studied nucleophiles follows the same order for all studied systems, viz. l-His > 5'-GMP > 5'-IMP > Ino. According to the measured activation parameters, all studied reactions follow an associative substitution mechanism. Quantum chemical calculations (B3LYP/LANL2DZp) suggest that ligand substitution in [Au(terpy)Cl](2+) and [Au(dien)Cl](2+) by imidazole follows an interchange mechanism with a significant degree of associative character. The results demonstrate the strong connection between the reactivity of the complexes toward biologically relevant ligands and their structural and electronic characteristics. Therefore, the binding of gold(III) complexes to 5'-GMP, constituent of DNA, is of particular interest since this interaction is thought to be responsible for their anti-tumour activity.
منابع مشابه
Kinetics and Mechanism of the Substitution Reaction of Amine in (bis(Acetyle Acetonato) Ethylenediimine) (Diamine)Cobalt(III) Perchlorate with N3-, Br- and NCS-
A series of complexes of the type trans-[Co(acacen)(amine)2]ClO4, where (acacen) is the (bis(acetyleacetone) ethylenediimine) and the amines are Benzyl amine (bzlan) 1, 2-amino pyrimidine (2ampy) 2, N-methylpipirazine (nmpip) 3, 3-methyl pyridine (3mpy) 4, p-toluidine (p-toldn) 5, has been synthesized and characterized by uv-vis. and FT-IR. The kinetics of the substitu...
متن کاملThe Kinetics and Mechanisms of Substitution Reactions of Trans-[Co(en)2CNCl]+ in Binary Mixed Solvent
The kinetics and mechanisms of the substitution reactions of trans-[Co(en)2CNCl]+ with unidentate anions, , CN¯, I¯, , Br¯ and SCN¯ in 60% v/v DMF-H2O binary solvent at 40.0±0.2 °C were studied spectrophotometrically. An Id mechanism was assigned for the replacement of chlorine by , CN¯ and I¯, an Ia one for...
متن کاملThe Kinetics and Mechanism of Oxidation of the N-Substituted Urea-Titanium (III) Complexes by Iodine (AS I-3) in Ethanol and Acetonitrile
The oxidation of complexes of Ti(III), (TiL6)3+ (L=ur, Meur, DMeur, DEture, N-Bu-ur, and Phur), by iodine as I3- in ethanol and acetonitrile solutions, appears to proceed as a second order reaction and is much faster in ethanol solution (where solvolysis occurs) than in acetonitrile. The enthalpy of activation appears to decrease as ligand's size ...
متن کاملThermodynamics and Kinetics of Spiro-Heterocycle Formation Mechanism: Computational Study
Reaction mechanism among indoline-2,3-dione, pyrrolidine-2-carboxylic acid and (Z)-2-(1-(2-hydroxynaphthalen-1-yl)ethylidene)hydroxycarboxamide to form 1’-((((aminooxy)carbonyl)amino)methyl)-2’-(1-hydroxynaphthalen-2-yl)-2’-methyl-1’,2’,5’,6’,7’,7a’-hexahydrospiro[indoline-3,3’-pyrrolo[1,2-a]imidazole-2-one was investigated using density functional theory (DFT) at B3LYP basis theory. The three-...
متن کاملComparison of thermodynamics and kinetics of reaction of the ozone with mercury, silver and gold
In this work, we report results of calculations based on the density functional theory of different species metal-ozone, containing mercury, silver and gold. The chosen species range from small molecules and large transition-metal containing ozone with mercury, silver and gold complexes. A comparative analysis of the description of the metal-oxygen bond obtained by different methodologies is pr...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Dalton transactions
دوره 41 13 شماره
صفحات -
تاریخ انتشار 2012